Item P-401, Item P-501 Quality Control, Acceptance Criteria, PWL Concepts 2006 March FAA Southwest Region Partnership Conference Jeff Rapol, Airport Engineering Division, AAS-100 jeffrey.rapol@faa.gov ### **Presentation Objectives** - Clarify the process that ESTIMATES Contractor Production Quality using Lot samples. - Provide brief explanation of PWL concepts and why there is a degree of uncertainty (risk) associated with acceptance plans when small fractions of material are used to evaluate a day's production. (AC 5370-10 Section 110) # **Quality Control—Hot Mix and PCC** - Responsibility of Contractor - Contractor controls processes. - General Provision Section 100 requires a Contractor Quality Control Program when P-401 or P-501 in the project. - Specification Items P-401 and P-501 contain minimum items to be included in the Contractor Quality Control Program. # **Quality Control—Hot Mix and PCC** - Addresses labs and technicians. - Processes include lab production, plant production, and field placement. - Some processes require the Contractor to use statistical quality control measures (run charts and range charts). ## **FAA Acceptable Quality** - Item P-401 and Item P-501--FAA assumes process control parameters that are "not unreasonable" for mat density, joint density, air voids, strength, and thickness. - All acceptance criteria is based on processes with variation in quality conforming to a normal "bell" curve. - Each day's production is evaluated and pay is based on daily evaluation of 4 random samples. ## Risk at Acceptable Quality P-401 ### Risk at Rejectable Quality P-401 ## Risk at Acceptable Quality P-501 ## Risk at Rejectable Quality P-501 # FAA Pay Adjustment Schedule Helps Balance Risk Levels | Percentage of Material Within Specification Limits (PWL) | Lot Pay Factor (Percent of Contract Unit Price) | | | |--|---|--|--| | 96-100 | 106 | | | | 90 - 95 | PWL + 10 | | | | 75 - 90 | 0.5 PWL + 55 | | | | 55 - 74 | 1.4 PWL - 12 | | | | Below 55 | Reject | | | # Quality Level "Q" vs. "z" Small Sample Theory Quality Level "Q" = Lot Average - Lower Spec. Limit Lot Standard Deviation #### Small Sample Theory: At 90 PWL "Q" = 1.200 when sample size, n = 4 At 90 PWL "Q" = 1.254 when sample size, n = 8 At 90 PWL "Q" = 1.267 when sample size, n = 16 At 90 PWL "Q" = 1.275 when sample size, n = 32 At 90 PWL "Q" = 1.278 when sample size, n = 64 At 90 PWL "Q" = z = 1.282 when sample size, n = 1.282 infinity ### **PWL Acceptance Limits** Q = Lot Average - Lower Spec. Limit Lot Standard Deviation 4 sublots per LOT: At 90 PWL Q = 1.200 for n=4 **POPULATION:** At 90 PWL Q = z = 1.282 for $n = \infty$ # **Item P-401 Acceptance Limits** Stability $$2150 - 1800 = 1.30 > 1.28$$ 270 Mat Density $$98.0 - 96.3 = 1.32 > 1.28$$ 1.3 Joint Density $$96 - 93.3 = 1.29 > 1.28$$ 2.1 Air Voids $$5-4.2 = 1.23$$ $2.8-2 = 1.23$ 0.65 #### **Outlier Check ASTM E 178** Outlier Determination for Mat Density. Density of four random cores taken from Lot 98.9 Average = 97.65 98.5 Sample s = 1.79 98.2 n = 4 95.0 PWL = 76 (93% lot pay factor) Q = Lot Average - Lower Spec. Limit Lot Standard Deviation #### **Outlier Check ASTM E 178** Outlier Determination for Mat Density. E-78 with n=4, 5 percent significance level, critical value for test criterion= 1.463 Compare Max (98.9 - 97.65) / 1.79 = 0.70 < 1.463No Min (97.65 - 95.0) / 1.79 = 1.48 > 1.463Yes #### Outlier Check ASTM E 178 Recalculate PWL after eliminating outlier Density of 3 random cores taken from Lot A. 98.9 Average = 98.53 98.5 Sample s = 0.351 98.2 n = 3 PWL = 100 (106% lot pay factor) NOTE: Outliers exist if: Density greater than (97.65+1.463x1.79), or Density less than (97.65-1.463x1.79) Lot Average +/- Test Criterion*Lot Standard Deviation are Critical Values # Pay Adjustment Schedule, e.g. Density and Air Voids, Item P-401 | Lot Density
90 PWL or Above | | | ot Densi
5-89 PW | | Lot Density
Below 55 PWL | | | | |--------------------------------|--------------------|---------------------------------------|----------------------|------------------|---------------------------------------|----------------------|-------|-------------| | | AND | | | AND | | AND | | | | Lot Air | · Void P | WL is: | Lot Air Void PWL is: | | | Lot Air Void PWL is: | | | | 90 or
Above | 55-89 | Below
55 | 90 or
Above | 55-89 | Below
55 | 90 or
Above | 55-89 | Below
55 | | Lot Pay Factor is: | | Lot Pay Factor is: | | | Lot Pay Factor is: | | | | | Higher of the two | Product of the two | 50% and total project payment reduced | of the two | Lower of the two | 50% and total project payment reduced | payment re | | • | # ITEM P- 401 Lot Pay Factor vs. Density Required: Example # P- 401 Lot Pay Factor vs. Air Voids Required: Example March 2006 # **Expected Pay versus Quality Levels SPONSOR ELECTS 106 % PAY** **Expected Pay Factor at Production PWL** | | Lot Pay | y Ave | rage in | Long R | un for n | =3 thru | n=8 | |---------------|---------------|-------------|---------|--------|-------------|---------|-------| | PWL | Factor | n=3 | n=4 | n=5 | n=6 | n=7 | n=8 | | 99+ | 106.0 | 106.0 | 106.0 | 106.0 | 106.0 | 106.0 | 106.0 | | 99 | 106.0 | 105.7 | 105.7 | 105.9 | 105.8 | 105.9 | 105.9 | | 98 | 106.0 | 105.3 | 105.2 | 105.4 | 105.4 | 105.5 | 105.5 | | 96 | 106.0 | 104.0 | 104.1 | 104.4 | 104.4 | 104.4 | 104.5 | | 95 | 105.0 | 103.1 | 103.6 | 103.9 | 103.8 | 103.9 | 104.0 | | 90 AQL | 100.0 | 100.1 | 100.2 | 100.8 | 100.8 | 101.0 | 101.0 | | 85 | 97.5 | 94.5 | 96.3 | 97.4 | 97.4 | 97.5 | 97.6 | | 80 | 95.0 | 89.9 | 91.3 | 92.5 | 92.6 | 93.0 | 93.3 | | 75 | 92.5 | 85.4 | 86.5 | 87.5 | 87.7 | 88.2 | 88.5 | | 70 | 86.0 | 80.8 | 81.6 | 82.1 | 82.4 | 82.6 | 83.0 | | 65 | 79.0 | 76.4 | 76.7 | 76.6 | 76.9 | 77.0 | 77.1 | | 60 | 72.0 | 72.1 | 72.0 | 71.1 | 71.6 | 71.4 | 71.3 | | 55 RQL | 65.0 | 68.2 | 67.7 | 66.2 | 66.5 | 66.0 | 65.7 | Southwest Region Partnership Conference March 2006 # **Expected Pay versus Quality Levels SPONSOR ELECTS 100 % PAY** **Expected Pay Factor at Production PWL** | | Lot Pay | y Ave | erage in | Long R | un for n | =3 thru | n=8 | |---------------|---------------|-------------|----------|-------------|----------|---------|-------| | PWL | Factor | n=3 | n=4 | n=5 | n=6 | n=7 | n=8 | | 99+ | 106.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 99 | 106.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 98 | 106.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 96 | 106.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 95 | 105.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 90 AQL | .100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | 85 | 97.5 | 94.5 | 96.3 | 97.4 | 97.4 | 97.5 | 97.6 | | 80 | 95.0 | 89.9 | 91.3 | 92.5 | 92.6 | 93.0 | 93.3 | | 75 | 92.5 | 85.4 | 86.5 | 87.5 | 87.7 | 88.2 | 88.5 | | 70 | 86.0 | 8.08 | 81.6 | 82.1 | 82.4 | 82.6 | 83.0 | | 65 | 79.0 | 76.4 | 76.7 | 76.6 | 76.9 | 77.0 | 77.1 | | 60 | 72.0 | 72.1 | 72.0 | 71.1 | 71.6 | 71.4 | 71.3 | | 55 RQL | 65.0 | 68.2 | 67.7 | 66.2 | 66.5 | 66.0 | 65.7 | Southwest Region Partnership Conference March 2006 | FR | OM E | ngr. Bri | ef No. 50 | Production Values Needed to | | | | | |------------|------|----------|-----------|------------------------------------|-------------|-------------------------------------|---------------|--| | | | | | | | Achieve Quality Level, Using | | | | | | | | FAA Model Assumptions | | | | | | | | | | Item P-401 | Item P-501 | | | | | | Prol | oability | of Achie | Density | Strength | | | | | | | | Factor of | $\mu = 98.0\%$ | $\mu = 675$ | | | | | PWL | 106 | ≥100 | ≥97.5 | ≥95 | ≥92.5 | $\sigma = 1.3\%$ | $\sigma = 55$ | | | | | | | | | L=96.3% | L=604.5 | | | 99 | 0.93 | 0.96 | 0.98 | 0.99 | 1.00 | 99.32 | 732 | | | 98 | 0.87 | 0.92 | 0.96 | 0.98 | 0.99 | 98.97 | 717 | | | 97 | 0.81 | 0.88 | 0.93 | 0.96 | 0.98 | 98.75 | 708 | | | 96 | 0.76 | 0.84 | 0.90 | 0.94 | 0.97 | 98.58 | 701 | | | 95 | 0.72 | 0.80 | 0.86 | 0.92 | 0.96 | 98.44 | 695 | | | 94 | 0.68 | 0.76 | 0.83 | 0.89 | 0.94 | 98.32 | 690 | | | 93 | 0.64 | 0.73 | 0.80 | 0.87 | 0.92 | 98.22 | 686 | | | 92 | 0.60 | 0.69 | 0.77 | 0.84 | 0.90 | 98.13 | 682 | | | 91 | 0.57 | 0.66 | 0.74 | 0.81 | 0.88 | 98.04 | 678 | | | 90 | 0.53 | 0.63 | 0.71 | 0.79 | 0.86 | 97.97 | 675 | | # FAA ACCEPTANCE –Lot pay equation has an advantage up to 96 PWL Lot-Basis, n=4 sublots per lot. Mat Density— Contractor target >=98.5% Joint Density – Contractor target >=96.5% Air Voids – Contractor target ~ 3.5% Strength –Achieve 8.5% Coefficient of Variability or Increase Over design Amount. Thickness -- 3/8" or better. #### **Workshop Interaction** #### **Workshop Interaction** 90 PWL Density Distribution, Production Target Density = 98% L = 96.3%Total = 22522 Total at or below L = 2820 20 98.7 99.0 99.7 100.0 100.3 100.7 98.0 96.0 96.3 98.3 95.3 Average = 98%, Standard Deviation = 1.3% # NUMBER OF LOTS PER PROJECT VS. MINIMUM EXPECTED PAY CONTRACTOR TARGETS PRODUCTION AT 90 PWL, 93 PWL, 96 PWL 95% PROBABILITY CURVES Estimating the Standard Deviation of a Population (σ)—Analogous to estimating the Target Production Standard Deviation When we wish to refer to the standard deviation of an underlying universe or parent population (target production), we use the symbol σ . In the construction process the true value of σ (target production standard deviation) is usually unknown. However, it is possible to estimate σ by using a (lot) sample (or series of (lots) samples) as follows: $\sigma = s / c_2$ Where s is the standard deviation of a (lot) sample of a given size (e.g. n=4), and c_2 , is a factor which varies with (lot) sample size as shown in the table. E.g., c_2 for a (lot) sample size, n=4, is 0.7979. | Sample Size | \mathbf{d}_2 | \mathbf{c}_2 | |-------------|----------------|----------------| | 3 | 1.693 | 0.7236 | | 4 | 2.059 | 0.7979 | | 5 | 2.326 | 0.8407 | | 6 | 2.534 | 0.8686 | | 7 | 2.704 | 0.8882 | | 8 | 2.847 | 0.9027 | Excerpt from Statistical Quality Control Handbook, Eleventh Printing—Copyright 1956 by Western Electric Co, Inc, Renewed 1984 by AT&T Technologies, Inc., page 131 paraphrased to apply to Lot acceptance. Southwest Region Partnership Conference March 2006